Environmental Exposures and Autoimmune Thyroid Disease

Gregory A. Brent, MD

Departments of Medicine and Physiology

David Geffen School of Medicine at UCLA

Etiologies of Hypothyroidism

- Chronic autoimmune thyroiditis-Hashimoto's disease
- Partial thyroidectomy.
- Radioactive iodine therapy for treatment of hyperthyroidism.
- External radiotherapy of the head and neck in patients with Hodgkin's lymphoma, leukemia, brain tumors, or bone-marrow transplantation.
- Infiltrative disorders of the thyroid gland (eg, amyloidosis, sarcoidosis, hemochromatosis, or Riedel's thyroiditis).

 Riedel's thyroiditis

Pathways of Environmental Agent Thyroid Disruption

Pearce and Braverman Best Pract Clin Endo Metab 23:801, 2009

Environmental Agents That Interfere With Thyroid Function

Agent	Example of Sources	Mode of Action	Thyroid Disease in
			Humans
Polychlorinated	Found in coolants and	TR	Possible increase in
biphenyls (PCBs)	lubricants, properties;	agonist/antagonist,	TSH, thyroid
	multiple congeners,	can alter levels of T4	autoantibodies, thyroid
	lipophilic	and TSH	volume
Organochlorine	Used as pesticide on	Induce hepatic	No established
pesticides	crops	glucuronyltransferase	association
		(UDPGTs)	
Polybrominated	Found in flame	Bind to TRs,	Increase in
diphenylethers	retardants	displaces T4 from	hypothyroidism in some
(PBDEs)		binding proteins	studies
Bisphenol-A (BPA)	Used in plastic bottles	Antagonize TR, lower	No established
		serum T4	association

Environmental Agents That Interfere With Thyroid Function

Agent	Example of	Mode of Action	Thyroid Disease
	Sources		In Humans
Perchlorate,	Rocket fuel,	Inhibits iodine	No established
Thiocyanate	fertilizer,	uptake, at sufficient	association
	smoking	levels reduces T4	
Triclosan	Antibacterial in	Reduces serum T4,	No established
	soaps	disrupts amphibian	association
		development	
Isotlavones	Soy products	Inhibits TPO activity	Possible increase
			in hypothyroidism

"Triggers" of Autoimmune Thyroid Disease

- Stress (?)
- Smoking
- Estrogen
- Pregnancy/Postpartum
- Existing Thyroid Autoantibodies/Genetic Risk
- Drugs-eg. Amiodarone, Lithium, cytokines (IL-2, interferon alpha)
- Iodine/Selenium status
- Viral and bacterial infections
- Environmental toxicants
- Medical radiation
- Environmental radiation exposure
- Iodine excess

Proposed Model for the Natural History of AITD

GH-Graves' hyperthyroidism Effraimidis G et al. Eur J Endocrinol 164:107, 2011 HH-Hashimoto's hypothyroidism

Population Urinary Iodine Values and Iodine Nutrtion

Median Urinary Iodine Concentration (μg/L)	Corresponding lodine Intake (µg/day)	Iodine Nutrition
<20	<30	Severe deficiency
20-49	30-74	Moderate deficiency
50-99	75-149	Mild deficiency
100-199	150-299	Optimal
200-299	300-449	More than adequate
>299	>449	Possible excess

Iodine-Containing Medications

Expectorants

[lophen (25 mg/ml)] [Par glycerol (5 mg/ml)] [R-Gen (6 mg/ml)]

Antiasthmatic drugs

[Mudrane (195 mg/tab)] [lophylline (2 mg/ml)] [Elixophyllin-K1 elixir (6.6 mg/ml)]

Antiarrhythmics

Amiodarone (75 mg/200 mg tab)

Antiamebics

Iodoquinol (134 mg/tab)

Douches

Povidone-iodine (10mg/ml)

Topical Antiseptics

Povidone-lodine (10 mg/ml) Clioquinol cream (12 mg/gm)

Radiographic Contrast Agents

[lopanoic acid (333 mg/tab)] [lpodate sodium (308 mg/tab)] IV preparations (140-380 mg/ml)

- Optiray 320mg/ml (CT scans)
- Visipaque 150, 270, or 320 mg/ml (coronary angiography)

<u>lodides</u>

SSKI (25 mg/drop) Lugol's solution (5 mg/drop)

Adapted from M. Surks Up-to-Date

lodine Induction of Autoimmunity

FIG. 1. Suggested mechanisms inducing iodine thyroid autoimmunity.

Medical Radiation

- Stimulation of antithyroid antibodies and autoimmune thyroid disease with external radiation for Hodgkin's disease.
- Thyroid hypofunction most common, but hyperthyroidism also seen.
- Reports of Graves' hyperthyroidism and ophthalmopathy after radioiodine for thyroid autonomy.

Susceptible Populations

- Lower Socioeconomic Status-Higher exposure to environmental toxicants.
- Radiation Exposed-Medical and Environmental.
- Reduced ability to "compensate" for impairment of thyroid hormone axis: fetus, infant, pregnancy women, iodine deficient, partial thyroidectomy, thyroid autoantibodies.
- Smoking

Risk Reduction of in the Individual Patient

Susceptibility Factor	Mechanism	Reduce or Monitor Risk
Genetic Background	Increase genetic	Awareness/avoidance of triggers
Family History of	susceptibility to	Low clinical threshold for thyroid
Thyroid Disease	environmental triggers.	function testing.
Excess Dietary Iodine	Increased immunogenicity	Maintain regular and sufficient
	of thyroglobulin, thyroid cell	intake, especially during pregnancy.
	destruction.	
Dietary Goitrogens eg.	Interfere with iodine uptake,	Sufficient iodine intake markedly
cassava, cabbage,	thyroid hormone synthesis	reduces susceptibility.
soy(?)		
Cigarette Smoking	May increase cytokines in	Increased risk of Graves' disease
	orbit and thyroid, complex	and Graves' ophthalmopathy
	interactions with the immune	Reduced risk of Hashimoto's
	system.	disease.

Adapted from Brent GA Thyroid 20:755, 2010

Risk Reduction in the Individual Patient (continued)

Susceptibility Factor	Mechanism	Reduce or Monitor Risk
Nuclear Incident	Direct thyroid destruction,	Potassium iodine ingestion at time of
	increased thyroid antigens	incident.
Medications	Stimulation of immune response	Thyroid function tests and thyroid
	at multiple sites.	autoantibodies in susceptible
		individuals, thyroid function test
		monitoring.
Environmental	Promotes autoimmune thyroiditis	Monitoring thyroid function tests and
Toxicants/Chemicals	in susceptible animal models.	thyroid autoantibodies, test well water
		for contaminants.
Medical Radiation	Increase thyroid antigens,	Awareness of increased incidence of
	inflammation.	Hashimoto's and Graves' disease,
		thyroid function test monitoring.