Similar <u>Mixture Approach</u> (SMACH)

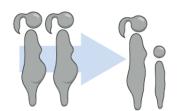
Chris Gennings, PhD

Professor of Biostatistics

Icahn School of Medicine at Mount Sinai, New York, USA

Whole Mixtures Risk Assessment & SMACH

- Both components-based (practical) and whole mixture (preferred) approaches are available for risk assessment of chemical mixtures.
 - Components-based approaches require the default assumption of additivity which limits relevance of mixtures;
 - Whole mixture approaches may be based on human-relevant exposures.
- Whole mixture approaches use "sufficiently similar" mixtures to represent a larger set of mixtures.



1.
Identification of bad actors
(mixtures) for health effects in epidemiological data

Epidemiology

EDC levels in urine, blood and clinical data

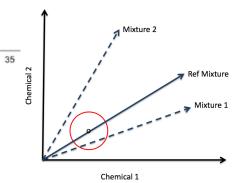
SELMA cohort

2.
Composition of reference mixtures from population data for experimental evaluations

Similar Mixture Approach (SMACH)

(in cells and animals) of reference mixtures for dose-response

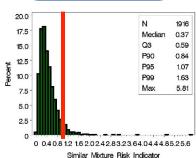
4a
Test for sufficient similarity with the

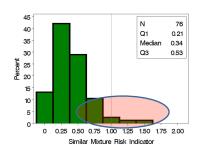

Experimental tests

LOAEL

15

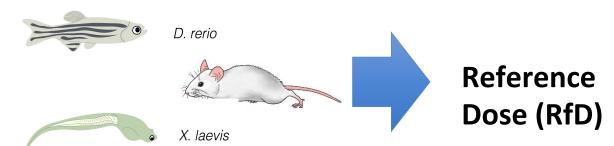
Dose (mg/kg)


NOAEL

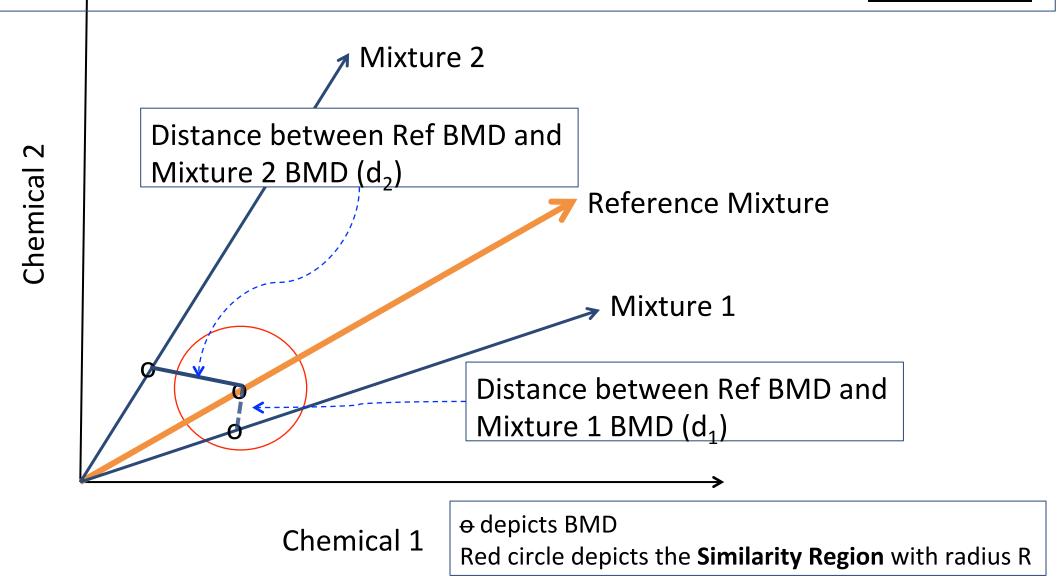

reference mixture

(%)

4b
For sufficient similar subgroups test for extreme mixture exposures, SMRI>1 (%)


4c
Demonstrate if
health effects are
associated with
SMRI
(adj risk, 95% CI)

Human Exposures relative to Regulatory Guideline Values


Regulatory Ratio = Human Exposure (Assessment Factor)
Reference Dose

	Single	Additive	General
	Chemical	Mixture	Mixture *
Regulatory Ratio	Hazard Quotient	Hazard Index	Similar Mixture Risk Indicator

^{*} Calculated for mixtures sufficiently similar to the reference mixture

Sufficient Similarity:

Data RICH Scenario Schematic (Marshall et al, 2013, Risk Analysis)

Test FOR Sufficient Similarity

- Simplifying assumptions in the typical "data poor" case
- Define the radius of the similarity region to be R
- Define d_j as the **distance** between the BMD for the reference mixture and the jth candidate mixture (as specified from exposure data).
- TEST FOR Sufficient Similarity:

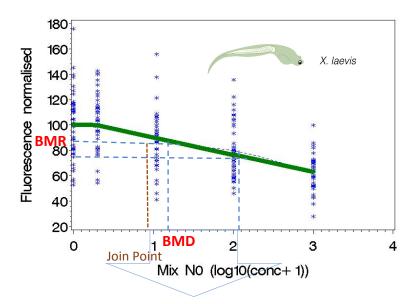
$$H_0$$
: d > R vs H_1 : d < R

- Reject H₀, and claim sufficient similarity, when upper confidence limit on d < R.
- This is an α -level test with sound statistical properties.

Similar Mixture Risk Index (SMRI_{REF})

$$SMRI_{REF} = \sum_{j=1}^{c} \frac{DI_{j} \left[mols / L \right]}{mRV \left[mols / L \right]}$$

where


- The DI_is are estimated human exposure concentrations; and
- The mRV is the reference value defined from the mixture BMDL.

Similar Mixture Approach (SMACH): Mixture N

Chemical	Mixing
	Proportions
MEP	27%
MBP	23%
MBzP	11%
MINP	21%
BPA	4%
PFHxS	3%
PFNA	1%
PFOS	10%

1X = geometric mean from SELMA

DMSO, 1X, 10X, 100X, 1000X

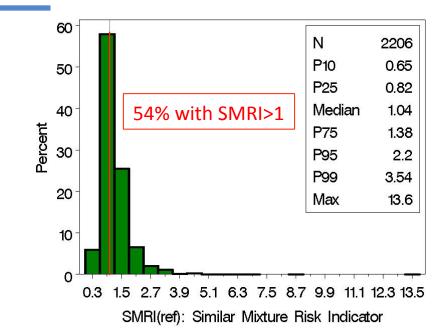
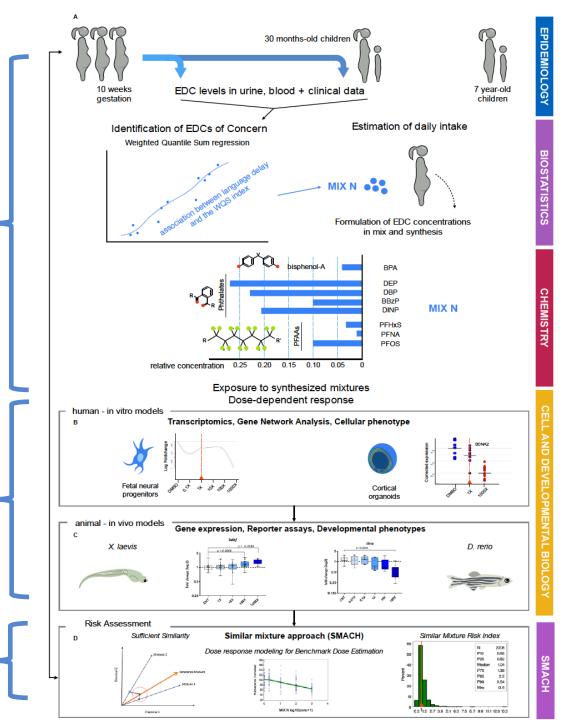

Test FOR Sufficient Similarity

Table: EDC-Mix Risk SMACH results for **Mixture N** where 1X approximates the geometric mean in pregnant women in the SELMA pregnancy cohort with:

- experimental evaluation in the XETA;
- OECD guidelines for XETA tests: the threshold for a response is set at 12%; and
- epidemiology evaluation of Language Delay at 2.5 yrs (N=2284)

BMD BMDL (1X units)	% Suff Similar to Ref Mixture	% SMRI>1 in Suff Similar group	SMRI: Low vs High decile: Adjusted difference
14X	96%	54%	OR=3.4
8X		(52% total)	(p=0.031)

Radius of Similarity Region



Conclusions from SMACH

- This is an objective and transparent approach for defining sufficiently similar mixtures from exposure data without assuming additivity.
- The test FOR sufficient similarity has sound statistical properties.
- The SMRI index can be used to monitor changes in exposure patterns over time and locations.

At human-relevant concentrations, this mixture disrupted hormone-regulated autism and intellectual disability genes in human brain organoids and altered behavioral responses in *in vivo* models

54% of the pregnant women (with sufficiently similar mixtures to the reference mixture) who took part in the study were found to be exposed to experimentally defined levels of concern

Acknowledgements

- EDC-MixRisk consortium:
- SELMA participants

- Funding sources:
 - EU Horizon 2020 (#234880)
 - NIH (T32 ES007334; R01ES015276)

Thank you!